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SECTION 1

INTRODUCTION

Pate-Cornell and .'_achon

1.1 EVA RISK: ]'HE ROLE OF SPACE DEBRIS

The risk of EVAs is critical to the decision of whether or not to automate a large part

of the construction of the International Space Station (ISS). Furthermore, the choice of the

technologies of the space suit and the life support system will determine (1) the immediate

safety of these operations, and (2) the long-run costs and risks of human presence in space, not

only in lower orbit (as is the case of the ISS) but also perhaps, outside these orbits, or on the

surface of other planets. The problem is therefore both an immediate one and a long-term one.

The fundamental question is how and when to shin from the existing EMU system (suit,

helmet, gloves and life support system) to another type (eg. a hard suit), given the potential

trade-offs among life-cycle costs, risks to the astronauts, performance of tasks, and

uncertainties about new systems' safety inherent to such a shift in technology. A more

immediate issue is how to manage the risks of EVAs during the construction and operation of

the ISS in order to make the astronauts (in the words of the NASA Administrator) "as safe

outside as inside".

For the moment (June 1997), the plan is to construct the Space Station using the low-

pressure space suits that have been developed for the space shuttle. In the following, we will

refer to this suit assembly as EMU (External Maneuvering Unit). It is the product of a long

evolution, starting from the U.S. Air Force pilot suits through the various versions and changes

that occurred for the purpose of NASA space exploration, in particular during the Gemini and

the Apollo programs. The Shuttle EMU is composed of both soft fabrics and hard plates. As

an alternative to the shuttle suit, at least two hard suits were developed by NASA: the AX5

and the MRKIII. The problem of producing hard suits for space exploration is very similar to

that of producing deep-sea diving suits. There was thus an opportunity to develop a suit that

could be manufactured for both purposes with the economies of scale that could be gained

from a two-branch manufacturing line (space and deep sea). Of course, the space suit would

need to be space qualified. Some of the problems in adopting one of the hard suits were first

that the testing had to be completed, and second that it required additional storage space. The

decision was made not to develop a hard suit in time for the construction and operation of the

ISS. Instead, to improve the safety of the current suit, it was decided to reinforce the soft

parts of the shuttle EMU with KEVLAR linings to strengthen it against debris impacts. Test
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results, however, show that this advanced suit design has little effect on the penetration

characteristics (Cour-Palais, 1996).

The advantage of the existing EMU design is that it is a mature technology. It has the

thmiliar flexibility of fabric and a relatively small mass, it can be stowed in a smaller space and

it does not require major further development costs. The downsides of the current suit are that

the soft parts are more vulnerable to space debris than the hard plates or the hard suits, that the

current (improved) shuttle EMU is very costly to manufacture and maintain, and that its low

pressure may affect the performance of the astronauts. Both the AX5 and MRK III are more

robust but are bulky and have more mass than the current space suit. In the long run, an

alternative solution will probably have to be developed anyway for the work that will be done

in Earth's orbits and for planetary exploration. NASA, however, may face political as well as

economic and technical constraints in that decision.

The problem of EVA safety has changed slightly in recent years because the density of

space debris in low-earth orbit (up to 1,000 km above the Earth's surface) has increased

markedly and is likely to continue to increase. The hard plates of any suit are not invulnerable

to these debris hits if the debris particles are large enough, but the soil fabrics, which at this

time constitute about 2/3 of the total exposed surface of the EMU, are definitely more

vulnerable. Debris 0.4mm in diameter and above can result in fatal accidents, especially

(depending on their shape) if they hit the fabric perpendicularly to the surface.

Debris hits, of course, are not the only source of failure risk in EVAs In a risk analysis

model developed for EVAs out of the space shuttle (Pat_-Cornell, 1994) and adapted in this

report for the construction of the ISS, eight accident types were identified:

• Suit failures

• Separation

• Airlock failures

• Life support system failures

• Radiation accidents

• Industrial accidents -

• De Novo events (medical emergency that is independent of the system's performance)

• Fire in the suit

For each accident type, accident scenarios were analyzed, starting from the initiating

events and ending with outcomes that were characterized along two dimensions: the state of

the astronaut at the end of the incident/accident, and whether or not the mission for which the
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EVA was done was accomplished. In the 1994 study, we used statistics when avadable There

were, however, very few such data. Therefore, we relied heavily on expert opinions (including

those of astronauts and of the NASA technicians involved in each of the subsystems) to come

up with a risk estimate and the risk contribution of the different failure modes. The overall

result suggested that the risk of a typical shuttle EVA is comparable to the risk run by the

astronauts for each Shuttle mission (in other terms that an EVA doubles the individual risk of a

Shuttle flight). This result is consistent with the result cited by the General Accounting Office

in a memo to the Administrator dated April 1992 (Gebicke, 1992). Based in large part on

expert opinions, we also found that the probability of an astronaut's death due to debris hits

was in the order of 2.5x 10-4 per EVA.

Space debris and micro-meteorites, therefore, contribute only part of the risks of EVAs.

They are, in fact, only a part of the failure mode "suit failure" which includes other initiating

events such as a seam failure or a joint restraint failure. Based on the very soft data that we

used in this previous study for illustrative purposes, we estimated that suit failure accounted for

about 20% of the overall probability of an incident (initiating event, followed or not by an

accident). In turn, space debris represented only 5% of the probability of incidents affecting the

space suit. Clearly, the construction and maintenance of ISS 'requires EVAs in which the

astronauts will often be more exposed to particle flux than in the cargo bay of the Space

Shuttle. Also, current estimates show that the flux of orbital debris present in the ISS's orbit

will be increasing in the future.

In the present study, we computed the risk of an EVA accident due to debris and

micro-meteorites for the construction and maintenance of the ISS for a total of about 3,000

man hours of EVA. It is therefore clear that the results that we obtained and that we present

further in this report represent only a fraction of the overall EVA risks.

1.2 THE CHALLENGE OF MANAGING NEW EVA TECHNOLOGY DEVELOPMENTS

The goal of a complete risk analysis in the EVA context is presumably (1) to support

management decisions regarding the use of EVAs and the design of EVA missions, and (2) to

help decide whether or not to develop a new, less vulnerable space suit for activities in LEO or

planetary exploration.

The problem of whether and when to develop a new EVA technology is a general one.

A technology may become obsolete and need improvements. Gradually improving the old

system presents the advantage of avoiding the new development costs and the risks inherent to
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infancyproblemin radicallynewsystems.Theproblem,however,is that thecostsof theold

technolo_' overthe lifetimeof theprojectmaybemuchhigherthanwhata newsolutionmight

permit and also, that some aspects of the risks might be better handled by a new system. In the

case of space suits, NASA contemplated for a tong time the possibility of a shift to a hard suit.

The decision was finally made to use the existing EMU because it was then too late and too

costly to finish the development of a new suit design in time for the beginning of the

construction of the space station. Now the question is whether the existing system is safe

enough for the duration of the anticipated EVA needs related to the ISS.

At the same time as these decisions were made, the number of EVA hours considered

necessary for the construction of the space station grew in the planning stage from about 300

initially, to about 600 a few years ago, and to 905 in May 1997. In addition to these, further

hours of EVA will have to be spent for maintenance and perhaps unforeseen events during the

planned 10 year life-time of the ISS. Currently, NASA expects a total of 2,000+ EVA man-

hours during the life-span of ISS. The question is whether the actual length of the EVA work

will increase substantially, and whether the resulting risks are acceptable with the currently

available (and somehow upgraded) shuttle EMU. In general, the optimal timing of a

technological shill depends (1) on the initial cost of the shill, (2)'on the costs of operation and

maintenance of the old technology, (3) on the risks associated with the operation of the old

system, (4) on the infancy risks associated with the introduction of the new system, and (5) on

the expected performance and safety level of the new system in the long term,

The decisions that remain to be taken by NASA concerning the construction of the ISS

are thus no longer whether or not a new system will be used (the old, improved one will), or

whether the buddy system will remain in effect (all EVAs will involve at least two astronauts).

There may, however, be some further decisions to add EVA hours to the construction

operations, some decision involving the relative position of the astronaut and the station, and

opportunities to provide some shielding against directed orbital debris (as opposed to ambient

micro-meteorites). In the long run, the question of whether to continue with the current space

suit is likely to resurface and to have to be addressed again in terms of costs, risks, and

performance.

The objective of this study is to present a risk analysis methodology, focusing on orbital

debris and micro-meteorites, illustrated with the current data available from the different space

centers and from the main suit contractor in order to support further decisions concerning the

use of EVAs during the construction of the station. In Section 2, we present a general risk

analysis model for EVAs during the space station construction and operations. This model
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which involves all anticipated failure modes is adapted from the probabilistic model that was

developed a few years ago for the shuttle EVAs (Pate-Corneil, 1994), accounting tbr a

different environment, the number of planned EVA hours, the current information about debris

and micro-meteorites and the modifications that have been made to the current suit. This

model allows placing the debris problem in the larger context of the different possible accident

sequences. In Section 3, focusing on particle flux, we present the data available to us

regarding the flux of debris in lower orbit ("loads"), and the resistance ("capacities") of the

different parts of the shuttle EMU to debris of different masses, velocity, shape and impact

angle. We describe the results of studies performed at Johnson Space Center (JSC). In

Section 4, we present our model and the data that we use. The main difference between our

model and the current ones is that we also consider the possibility of penetration/resistance of

hard plates, and the effect of passive shielding by the shuttle or by the ISS. In conclusion, we

discuss the limitations and uncertainties of our model. We identify the areas where further data

gathering will be necessary and we examine some of the potential implications of our results for

the analysis of EVA management options in the ISS context.
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SECTION 2

AN OVERALL RISK ANALYSIS MODEL FOR EVAs DURING THE

CONSTRUCTION OF THE SPACE STATION

Mthough the focus of this report is on the effect of debris and micro-meteorites on the

risk of EVAs during the construction of the Space Station, this portion of the total EVA risk

needs to be put in perspective. In this section, we present an overall risk analysis model that

allows computation of the total EVA risk, to which particle penetration may contribute only a

small portion.

2. I ACCIDENT TYPES

The structure of this overall model relies on the identification of a set of accident types

similar to those that were used in the shuttle EVA risk study. These accident types are

assumed to be mutually exclusive and collectively exhaustive (see'Table 2.1-1).

AT1: Suit, glove or helmet failure leading to decompression of different severity levels

(from minor leak to sudden, catastrophic and total) Includes impact of space debris and

micro meteorites as initiating events.

AT2: Separation (astronaut drit'ting away from planned site, due either to mechanical failure

or to human error)

AT3: Airlockfailure (e.g., failure of the hatch, the structure, or the pressure valves)

AT4: Life Support System failure excluding the pressure maintenance systems (included in

AT1 ): breathing problems, thermal system and communication failures, includes impact

of space debris and micro meteorites as initiating events

ATs: Radiation accidents.

AT6: Industrial accidents (e.g., glove stuck in equipment, astronaut hit by a tool)

ATT: "De novo" events (.new medical events that could occur elsewhere as well; e.g., cardiac

failure or nausea)

ATs: Fire inside the suit caused by oxygen ignition (initiated by short circuit or frictions)

ATI in bold: Accident types involving particle penetration

Table 2.1-1: Classification of accident types (ATi) for the PRA model (Pate-Cornell, 1994)
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Two of the accident types involve impact bv debris and micro-meteorites as possible

initiating events: AT1 (failure of the suit, glove or helmet), and AT4 (failure of the life support

system) The overall risk analysis model can be represented by the influence diagram of Figure

"_ 1-1.

AT2

Separahon

ATI

Suit Failure

AT3

Airlock Failure

AT4

Life Support

System Failure

AT5

Radiation

Accident

End State of

Astronaut

AT6

ltxdustrial

Accident

AT7

De novo events

Locadon

of

incident

AT8

Fire in suit

Figure 2.1-1: Influence diagram of overall model of accident types and outcomes (state of the

astronaut and status of the mission, i.e., EVA job).
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2.2 OUTCOMES

The model of Figure 2.1-1 indicates that the state of the astronaut and the status of the

EVA job given an initiating event depends on the accident type (characterized by its level of

severity), and on the location of the incident (described by the distance between the astronaut

and the closest airlock). The outcomes of the possible accident scenarios are described in Table

2.1-2 They are defined by the state of the astronaut (death or severe brain damage, alive or

light injury), and the status of the EVA work (accomplished or canceled).

We do not explicitly consider here property or equipment damage, or less severe

astronaut injury. The models, however, can be easily extended to several intermediate states if

justified.

OCI

0C2:

0C3

0C4:

Recovery (with or without minor astronaut injury). EVA work accomplished (Code

notation: AOK, WA)

Loss of EVA work without astronaut casualty (no death or serious injury) (AOK, WO)

Astronaut casualty without loss of EVA work (AD, WA)

Loss of EVA work with astronaut casualty (AD WO).

Table 2.1-2: Outcomes of the possible accident scenarios

2.3 ACCIDENT SCENARIOS

For each accident type (e.g., decompression), failure scenarios are analyzed. This

analysis starts with each possible initiating event (i.e., the first incident that starts the accident

process in orbit), then the sequences of events that can follow this initiator, ranging from the

detection and fixing of a minor problem to a catastrophic event from which recovery is

impossible. This second phase can involve a dynamic analysis based on stochastic processes

since the time factor is often critical to human survival. For each sequence of events, one

computes the probability that it ends in several possible consequence categories, conditional on

the initiating event. The probability of each scenario is obtained by multiplying the marginal

probability of the initiating event and the probabilities of different outcomes conditional on the

initiating event. This is done by multiplying the probabilities of a sequence of intermediate

events and variables, all conditioned on those that precede them in the scenario.
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2.4 PROBABILITY COMPUTATION

The probability of each outcome is then computed by summing the probabilities of the

accident sequences leading to that outcome. One may want to proceed to further treatment of

uncertainty by defining, instead of the probability of various outcomes per EVA, the future

frequencies of the different outcomes and treating these future frequencies as random variables.

This approach may be desirable to provide a measure of the uncertainties involved given that

there is little information on EVA risk. For simplicity, however, this preliminary study is limited

to first-order probabilities per flight.

The success or failure of a mission conditional on the occurrence of an incident is linked

to the location of the astronaut at the time of the initiating event. The different phases of the

EVA are defined as shown on the time axis of Figure 2. "fit" represents the very short time

following the exit of the alrlock when a decompression accident can occur if there is a defect in

the space suit itself, or if it has not been properly assembled. For each of the EVA phases, an

important factor in the assessment of the probability of particle hits is the level of shielding

given the position of the astronaut with respect to the space station or to the cargo bay of the

space shuttle (at the beginning of the construction program).

Notations:

ATt:

IE,j:

OCk:

p(.):

p(.I.):

p(.,.):

Accident types

Initiating events (indexed in ij) within each accident type

Outcomes (Four classes and indexed in k)

Probability of an event

Conditional probability of second event given the first

Joint probability of two events.

PHASE 0: PHASE 1: PHASE 2: PHASE 3:

Vaccum in Traasfer to EVA Task Return to

Air Lock _, Task Site Air Lock

EXIT ENTRY

PHASE 4:
A

Repressurization Time
of Air Lock

Figure 2.4-1: Different phases of the EVA (Phase 0 to Phase 4)

Assuming that the initiating events within each accident type are mutually exclusive and

collectively exhaustive, the probability of each accident type is the sum of the probabilities of

the initiating events that trigger the accident type:
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p(AT) = _ p (IE 0)

J

(2.1-1)

The risk is characterized by the overall probability distribution of the outcomes

described by the four possibilities of Table 2. The overall probability of each outcome is the

sum for all accident types of the probabilities of outcome and accident type:

p(OCk) = _ p(ATi) x p(Oek] AT,) (2.1-2)

i

Therefore, characterizing each accident type by its set of initiating events:

p(OCk) = _ _ p([Eij ) x p(OCkllE,j )

ij

(2.1-3)

The initiating events (IEij) for each accident type ATi are subdivided into several

categories (severity level, incident characteristics, etc.). Each of accident initiators is then

described by its possible realizations. For instance, one of the initiating events of AT, (failure

of the suit, glove or helmet) is the impact of debris or micro-meteorites. It could be subdivided

into different event categories describing both the size of the particle and the angle of impact.

At the time of the space shuttle EVA study (1994), no angles of impact were

considered for particle penetrations of the EMU Yet, when focusing on the effect of particle

hits on the space suit, the impact angle is likely to play a role: a shallow angle may permit the

particle to be reflected by the surface. The probability of a hit of different categories depends

on the time spent by the astronaut at different levels of shielding, which itself may depend on

the phase of the EVA as shown in Figure 2.1-2. The effect of shielding on the EVA outcome

depends both on the part of the suit that is hit (soft goods vs hard plates) and, for a severe but

survivable hit, on the distance to the airlock, as the time available to bring the astronaut back to

Station pressure might be critical.
v

Each of the accident types and each of the initiating events within an accident type may

require a different risk analysis model. Some of these models are described in the 1994 report

by their respective influence diagram and apply to the ISS as well (e.g., separation).
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SECTION 3

PENETRATION RISKS OF EMU: CURRENT STATE OF RESEARCH

A great deal of research has taken place in the different space centers to gather the

information necessary for the analysis of the contribution of orbital particles to the EVA risk.

In this section, we summarize the state of these data.

During some EVA operations, the astronauts will operate outside the protection of the

space shuttle or the ISS, exposing themselves to the particle flux of orbital debris and micro-

meteorites present in LEO. For safety purposes, two astronauts will be active at the same time

in the vicinity of the space shuttle or the space station (the buddy system). Current estimates

for the total amount of EVA man-hours are in the range of 2,600h (i.e. 2 astronauts at 1,300h

each). As mentioned earlier, this number has changed in the past and we expect it to be

modified again in the future. There is a direct relation between probability of particle

penetration for the EMU and total EVA time, albeit not necessarily a linear one as particle flux

is expected to vary in the future. It is therefore important to assess the probability of particle

hits and penetrations during EVA operations for the management of both the shuttle EVAs and

the construction of the space station.

Models of both orbital debris and micro-meteorite flux have been developed by NASA.

Employing these models, we can calculate the probability of particle hits for objects orbiting in

LEO. Given the probability of a particle hit, its energy, and the penetration characteristics of

the EMU, we can calculate the probability of penetration. Unfortunately, there are still large

areas of insufficient knowledge concerning the materials and physical processes involved (e.g.

penetration of different suit materials at different velocities and impact angles). This gap calls

for extensive research in the area of particle flux and space suit impact characteristics. The

particle flux present in LEO varies with altitude and, to a lesser extent, with inclination. While

the flux stemming from meteorites and large debris is well documented, the same is not true for

small and medium orbital debris (less than 10cm in diameter) which can be critical to EVA

safety. More research into the sources of small and medium debris is needed.
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In this section we analyze the loads and the capacitiesof the system under

consideration.Theloadsconsideredhereare theparticlesimpactingthe EMU, i.e. the micro-

meteoriteand orbital debrisparticle flux. The capacityof the systemis the suit's ability to

withstandtheimpactsof theseparticleswithout losingits ability to providelife supportfor the

astronaut.Oncethe loadexceedsthecapacity,the systemfails. Generally,the probabilityof
systemfailurecanbeexpressedasfollows:

p(Failure)-- p(Loads> Capacities,overtotal exposuretime)

It is thereforeimportantto havereliabledatafor thesystem'scapacityandtheloadsto

which it mightbeexposedovertime. Uncertaintiesaboutthe loads(or capacity)automatically
resultinuncertaintiesabouttheprobabilityof failure_.

3.1 LOADS:THE FLUX MEASUREMENTS

The particle flux to which astronauts are exposed in LEO consists of micro-meteorites

and orbital debris. Meteorites are natural objects orbiting the sun and passing through the

earth's orbit. Orbital debris are man-made objects in Earth orbit that are non-functional. They

include spent rocket bodies, nonfunctional spacecratts, fragmentation debris and mission-

related debris (e.g. exhaust products from solid rockets). Generally, micro-meteorite particles

are of lower density than orbital debris (roughly by a factor of 2), but travel at higher velocity.

Micro-meteorite flux is dependent on the altitude and inclination of EVA operations as

well as calendar time (solar activity). Orbital debris flux depends on altitude and inclination of

EVA activities and on recent orbital incidents. As a result of these parameters, the flux of

particles will vary over the life time of the space station (mainly due to the meteorite flux

related to solar activity and additional orbital debris). Current estimates predict that during the

scheduled life of the ISS, the particle flux will be at its peak in 2009. The models developed by

NASA for particle flux in LEO take these variations and other particle characteristics into

consideration. The US Space Command monitors and catalogues all known objects in LEO

that are of diameter 10cm..or larger. For smaller sizes, however, no exhaustive monitoring is

possible and only samples of the population can be taken (allowing to estimate the population

size).

By this we mean uncertainty about the probabilities - having an estimate of p(Failure) = 25% to 30% clearly
is superior to having an estimate of p(Failure) -- 20% to 60%
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Size Number of Objects

8, 000

Percent Number Percent Mass

I0- cm 0.02% 99.93%

1 - 10 cm 110,000" 0.31% 0.035%

O. 1 - 1 cm 35,000,000" 99.67% 0.035%

Total 35, 118,000 100.00% 2,000,000 kg

Source: G.M Levin, Office of Space Flight, 1996

Statistically estimated value

Table 3.1-1 : Estimated Debris Population

Due to increasing space activity, the amount of orbital debris will increase at a rate greater

than the natural decrease due to atmospheric re-entry. With an increasing number of spacecraft

orbiting Earth, the probability of collisions of spacecraft also increases (e.g. collision of

satellites 18208 and 23606 on July 24, 1996). Debris clouds resulting from these collisions

are considerable and pose a threat to other orbiting objects.

In its 1995 Interagency Report, the National Science and Technology Council published

estimates of orbital debris and meteorites orbiting Earth at altitudes of up to 2,000kin It is

estimated that 1,000 kg of mass is orbiting Earth in the form of debris of diameter sizes of less

than 1.0 cm, 300 kg of which are attributable to orbital debris smaller than 0.1 cm in diameter

The total mass of meteorites in these orbits is estimated at 200kg. This makes the orbital

debris environment more hazardous than the micro-meteorite environment.

Data retrieved from space-shuttle flights show that during a total of 592 mission days, 313

relevant impacts took place in the windows area of the shuttle (i.e. producing pits or even

window replacements). The total window area of the shuttle is 3 m 2, which is comparable to

the surface area of the EMU and therefore a first estimate for the number of expected impacts.

Two of these shuttle window impacts would have had sufficient energy to penetrate the sof_

parts of the EMU. The effect of shielding, however, may be different for the shuttle windows

and astronauts during planned shuttle EVAs.

3.2 CAPACITIES: EMU VULNERABILITY TO PARTICLE HITS

During EVAs, the EMU has to provide astronauts with life support while protecting

them against the environment. One of the environmental threats is that of being hit by a high-

velocity particle. The space suit currently used by NASA consists of various types of
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materials Its penetrationcharacteristicscanbe broadlycategorizedinto soft partsand hard

parts. Soft partsarepartsthat areonly protectedby theThermalMeteoriteGarment(TMG)
andthatarenot coveredbymetalor plasticplates.With thecurrentdesign,roughly2/3 of the

suit's surface area consist of soft parts. Soft parts are used to cover the feet, legs, arms and

hands of the astronaut. These areas are more easily penetrated by high-velocity particles than

hard parts. The soft parts of the EMU can support a hole of not more than 4ram in diameter

for 30 minutes (i.e. the astronaut will have sufficient oxygen pressure during that time). Any

hole larger than this would be critical.

The following table shows the surface areas for the parts that constitute the space

shuttle suit (Cour-Palais, 1996). The element's failure criteria are listed. For the elements

consisting of TMA and bladder (soft parts), there are two failure criteria: a penetration hole of

at least 4ram diameter, resulting in a critical incident - or a leak of less than 4ram in diameter,

which would be non-critical. The 4ram threshold appears to be a step function, but in reality, it

is not. For all other elements any spall or leak would be critical.

Elements

Boots

Gloves

Lower Legs

Upper Legs
Lower Arms

Upper Arms
Waist Brief

Helmet&Visors

HUT

[D&CM

PLSS: Valves etc.

PLSS: CCC

PLSS: Battery Cover

PLSS: Pmary Gox

PLSS: Secondary Gox

Sizing, ltjn_s

Material

Layup
TMG +Bladder

TMG + Bladder

TMG_- Bladder

TMG + Bladder

TMG + Bladder

TMG + B ladder

TMG+ Bladder

Lexan +P olysulfone

TMG+ Fiberglas

TMG+ 1.6ram Alumin.

TMG+ 1.6mm Alumin.

TMG+ 2.3ram Alumin.

TMG + O,46ram A lumm

TMG+ 3.6ram Alumin.

TMG* 1.8mm Alumin.

TMG+ 3.2ram Alumin.

Failure

Criteri a
NL & 4ram

NL & 4ram

NL & 4ram

NL & 4ram

NL & 4ram

NL & 4ram

NL

NPS

NPS

NPS

NPS

NL & 4ram

NPS

NPS

NPS

VPS

S. Area

lm^21

0.46

0.10

O.60

0.26

0.38

0.28

0.23

0.21

0.12

O.05

0.31

0.07

0.03

0.24

0.24

variable

(NPS: No Perforation or Spall; NL: No Leak; HUT: Hard Upper Torso; D&CM: Display

& Control Module; PLSS: Portable Life Support System; CCC: Containment Control

Carmdge; CA)X: GaseousOxygen)
Source: Cour-Palais, 1996

Table 3.2-1 The Space Shuttle Suit Elements
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Hard pans consist of some form of metal sheet or plastic (in the case of the helmet),

covered by the same TMG as the soft pans of the suit. Hard parts protect the LSS on the back

of the astronaut, the display and control module on the chest of the astronaut as well as the

astronaut's helmet.

To estimate the effect of high-velocity impacts (FIVI) on soft parts, high-velocity

impact tests have been performed at AMES. The tests subjected the suit material to impacts of

nylon spheres (1.14 g/cc, representing micro-meteorite panicles) and aluminum panicles

(2788/cc, representing debris panicles). The test data were then analyzed and a functional

relationship between the kinetic energy of the penetrating panicle and the resulting hole

diameter was developed (Cour-Palais 1996). These formulae are only applicable for the soil

pans of the suits.

Shot Nr. Mat. Diam. Mass Speed Energ_ Result

,-12905 AI

A2894 AI

A2896 AI

A2897 AI

A2900 AI

A2907 AI

A2910 A1

A2911 A1

A2912 A1

A2929 A1

A2930 AI

A2931 AI

A2932 AI

A2933 AI

Angle V.Enerev

[mm] [g] [km/s] [J] [deg] [J]

0.299 0.000311 6.85 5.25 0 5.25

0.300 0.000314 7.00 5.54 0 5.54

0.392 0.000701 6.90 12.01 0 12.01

0.404 0.000768 6.68 12.32 0 12.32

0.500 0.001456 7.03 25.88 0 25.88

0.600 0.002515 6.95 43.70 0 43.70

0.599 0.002503 5.79 30.18 0 30.18

0.520 0.001637 4.35 11.14 0 11.14

0.794 0.005829 5.23 57.35 0 57.35

0.407 0.000785 6.95 13.64 30 11.81

0.495 0.001412 6.84 23.77 30 20.58

0.608 0.002617 7.18 48.53 30 42.03

0.517 0.001609 5.66 18.54 30 16.06

0.404 0.000768 7.11 13.96 45 9.87

[Bladder]
No Hole

No Hole

'No Hole

No Hole

No Hole

Pinhole

Hole (1.3mm)
No Hole

Hole (2.5x2.1 mm)
No Hole

Pinhole

Hole (0.5mm)

Hole (0.8ram)
No Hole

(Specific mass of Aluminum: 2.78/cm3;

[m/sl)

KineticEnergy: _ m v2 with m measured in [kg] and v measured in

Source: Kosmo, Joseph

Table 3.2-2: Results of HVI tests

For the hard parts of the suit (aluminum sheets, covered by TMG), no closed functional

relationships have been developed so far. Instead, a combination of formulae is used: a

formula derived by Fish and Summers in 1967 for the penetration of metal sheets and a formula

for the penetration of the TMG (the same formula is used for the soft part of the suit). We use
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theseformulaein section4. Basedon theseformulae,Cour-Palaiscalculatedtheballisticlimits

for the hard partsof the suit. Theseballistic lirrutsareestimates.At this point, thereareno
penetrationtestsavailablefor theTMG coveredhardpartsof thesuit.

3.3 CURRENT RESULTS

Calculations of probabilities of penetration rely on four sources: Hodgeson (1993),

Cour-Palais (1996), ORDEM96 (1996) and SSP30425A (1991).

Hodgeson, an employee of Hamilton-Standard, the company that produces the current

space suit, found that the probability of penetration of the hard parts of the EMU is negligible

compared to the probability of penetration of the soft parts. Cour-Palais developed the

formulae for penetration of the soft parts and the estimated the ballistic limits (i.e. the kinetic

energy necessary for suit penetration) for the hard parts of the suit. Finally, ORDEM96 and

SSP30425 are used for the calculation of the flux of orbital debris and meteorites in LEO,

respectively.

Orbital Debris Impact at lOkm/s:

Diameter [cml Mass[gl Energy [J]
0.03 0.0000 1.9156

0.04 0.0001 4.5406

0.05 0.0002 8.8685

0.06 0.0003 15.3247

0.07 0.0005 24.3350

0.08 0.0007 36.3252

0.09 0.0010 51.7208

0.10 0.0014 70.9476

0.11 0.0019 94.4313

0.12 0.0025 122.5975

0.13 0.0031 155.8720

0.14 0.0039 194.6803

0.15 0.0048 239.4483

Table 3.3-1: Impact energies of orbital

debris particles

Cour-Palais (1996) provides formulae to calculate the kinetic energies necessary to

penetrate the various parts of the EMU. For orbital debris, a level of 75 J would be sufficient to

penetrate any part of the suit (including hard parts). From table 3.3-1 we conclude that any
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debris particle of diameter0.[l cm and larger would have sufficient kinetic energy-'for

penetration.Thismeansthat aparticleof little morethan lmmin diameterwouldpenetrateany

partof theEMU andmostlikelyresultina fatalaccident.

To obtaintheballisticlimits for penetrationof the hardparts,Cour-Palaisusedresults

obtainedfrom I_q testson aluminumsheetsandthe resultsobtainedfor the soft partsof the

suit (penetrationof theTMG). He thencombinedthesedatato calculatetheresultsfor hard

parts,shownin table3.3-2.

ORDEM96isa FORTRAN-basedcomputercodethat canbe runon DOSPC's.It was

developedby Kessleret al. at JSC.Thecoderequiresvariousinputsconcerningtheobjectin
orbit andtakesinto considerationa growth rateof orbitaldebris.The code's output is the flux

data for a given range of particle diameters.

Suit Element.

Arms&Legs

Arms&Legs
Boots&Gloves

Boots&Gloves

Sizing Rings

HUT

Waist(Brief)
Helmet&Visor

D&CM

D&CM

PLSS: Primary GOX

PLSS: Secondary GOX

PLSS: CCC

PLSS: CCC

PLSS: Battery Cover

PLSS: Valves etc.

PLSS: Valves etc.

Failure Mod.e Meteorite Debris

No Leak 3.4 3.2

4 mm Hole 68.0 56:0

No Leak 3.4 3.2

4 mm Hole 68.0 56.0

No SpallA, eak 47.6 39.3

No Spall/Leak 70.0 44.0
No Leak 3.4 3.2

No Spall/Leak 167.0 71.0
Not Critical NA NA

No SpallfLeak 11.5 10.0

No Spall/Leak 75.0 60.4

No Spall/T, eak 15.4 13.4

No Spall/Leak 25.5 21.4
4 mm Hole 172.0 71.0

No Spall/Leak 3.5 3.5

Not Critical NA NA

No Spall,rLeak 11.5 I0.0

Source: Cour-Palais, 1996

Table 3.3-2: Ballistic Limits of Suit Elements

: We follow standard procedure and assume a relative velocity of 10km/s for orbital debris particles

2O



Pate-Cornell and Sachen

SSP30425A (1991) was released by the Space Station Freedom Program Office in

Reston, Virginia. It defines the natural environment for the space station's design. Paragraph

8 deals with meteorites and orbital debris. The formulae stated therein allow to calculate the

flux of meteontes in LEO (the debris model of SSP30425 has been updated in ORDEM96 and

therefore, we use ORDEM96 data to model the debris flux).

Based on SSP30425, Simonds (1996) developed a Monte-Carlo simulator that

calculates the probability of no penetration for the soft parts of the space suit. Simonds

computes the probability of no penetration (PNP) over a time period of 2,172 hours (estimate

for total EVA during life-time of ISS) of EVA to be in the range 0.69 - 0.90 This result

includes penetrations that are non-critical, due to their small size. Simonds' estimate for the

probability of no critical penetration 3 (PNCP) over that time period is 0.984 - 0.994 (with a

best estimate of 0.992).

At the Micro-Meteorite and Orbital Debris Summit organized by the EVA project

office in June 1996, a limit of acceptable risk was defined. The probability of no penetration

(PNP) was set to PNP = 0.92 over 10 years of operation of the US segment of the space

station. Simonds' results indicate that this level cannot be obtained by the current design of the

space suit. However, he also indicates that the AX-5 Ames space suit is superior to the current

space suit in some of the critical aspects. He refers in particular to the AX-5 Ames suit

component that was used in tests of the advanced space suit in penetration tests. This part was

superior to the corresponding part in the space shuttle suit.

The data available for the penetration of the space suit fabric are not conclusive: the

number of tests is small, no penetration tests of TMG with metal plate are available, the

possibility of suit ignition was not fully investigated, and the physical and psychological effects

of suit penetration on astronauts is poorly known. Yet, the main factor of uncertainty is the

flux of orbital debris in LEO: a high level of uncertainty about the loads (i.e. debris flux)

necessarily implies a high level of uncertainty in the risk analysis results (i.e., the probability of

suit penetration over time).

3 'Non-Critical" refers to a situation where the astronaut is not severely injured or killed

21



Pate-CornellandSachon

SECTION 4

PROBABILISTIC RISK ANALYSIS OF EMU PENETRATION

4.1 EVAS

EVAs will be conducted during the construction and operation of the ISS Each EVA

involves different phases that are relevant to the probability of particle penetration. We have

identified these phases as: "leaving the hatch", "transition to the operation area", "activities in

the operation area" and "transition back to the hatch". During some of these phases, the

astronaut will be shielded to some degree by the space shuttle or the ISS. During other times,

he/she will not be shielded and will operate in open space.

Orbital debris will be approaching the astronaut from the direction of the ISS's velocity

vector, while the micro-meteorite flux is omni-directional. This implies that passive protection

measures will have significant impact on the probability of debris hits, but less so regarding

meteorite hits. Therefore, the meteorite flux will only decrease slightly if the astronaut

operates "behind" the shuttle while the debris flux will be noticeably smaller.

In the case of a particle hit during an EVA, there are four different possible outcomes:

a) the particle does not penetrate the EMU, no damage is done

b) the particle penetrates the EMU but is non-critical (i.e. hole of less than 4mm in the a

soft part of the suit) and the astronaut reaches the hatch

c) the particle penetrates the EMU and creates a hole of more than 4mm in diameter (soft

part) - but the astronaut can still reach the hatch in time

d) the particle penetrates the EMU and immediately kills the astronaut or the astronaut is

not able to reach the hatch before his LSS falls to function

The outcomes depend on the kinetic energy of the particle, its impact angle, the part of

the suit being hit and the astronaut's distance to the hatch of the shuttle or the ISS. Given that

the particle penetrates the suit, the performance of the LSS is also relevant (i.e. will the

secondary GOX provide enough oxygen to get the astronaut back to the hatch?).
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Pate-Cornetl and Sachon

Our model is represented by the influence diagram 4, shown in figure 4.2-1. The model

simulates the LEO environment for the ISS. We use the data obtained from the space shuttle

vdndow impacts (313 hits in 592 mission days) to assess the hourly probability of impact

during EVAs The impact data for the shuttle mission were gathered in orbits that are different

from the planned orbit of ISS, but presumably, the shuttle orbits have a lower particle flux than

the planned ISS orbit (therefore, we are conservative).

Figure 4.2-1: The PRA Model

4 An influence diagram is a graphical tool that represents the structural level of the decision problem; it is
mainly used for communication purposes between the decision maker and the decision analyst
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Model evaluation: Given that an impact occurs _ we evaluate whether shielding if

effective or not. If no shielding is effective, we compute the energy of the impacting panicle

and identify the part of the suit being hit. Given the impact energy and the part of the suit

being hit, we can calculate whether there is penetration or not. If there is penetration, we

check whether there is ignition or not. If there is no ignition, we check whether the LSS is

working properly or not and we calculate the remaining oxygen supply (in minutes). We then

compare this quantity to the amount of oxygen needed to get to the hatch (never more than 30

minutes).

Data sources: Given that an impact occurs (we use the shuttle window impact statistics

for the analysis of uncertainties), we use ORDEM96 data and the formulae in SSP30425 to

assess the diameter distribution of orbital debris and meteorites respectively. We calculate (by

using ORDEM and SSP30425) the flux of particles that are large enough (or larger) to

penetrate the soft parts of the EMU Both ORDEM96 and SSP30425 provide us with

cumulative flux estimates, that is, flux data for particles of a given size and larger. Based on

these flux calculations, we compute the conditional probabilities for each diameter class as its

contribution to the overall particle-flux 6. Throughout these computations, we assume an

impact velocity of 10km/s for debris and 20km/s for meteorites. We simulate impacts at

various angles and we calculate the vertical (normal to the surface) impact velocity 7. Based on

a function the vertical impact velocity, the particle type and diameter and the part of the suit

being hit, we calculate the hole diameter (soft parts) or check the ballistic limit for penetration

(hard parts). The formulae for the hole diameters due to impacts in sott parts areS(Ep, the

kinetic impact energy 9, measured in [J]):

Hole diameter due to impact by micro-meteorite:

DH = O.00153 * Ep m" [cm] (4.2-1a)

Hole diameter due to impact by orbital debris:

DH = O.00176 * Ep TM [cm] (4.2-1b)

s Based on the data gathered from window impacts on shuttle missions, we calculated a probability of
0.007m:hr t for a a particle hit during EVA

6 We calculate the relative weight of each diameter class within the total flux, e.g. "85% of the total flux is due

to particles of size 0.01cm"
' The exact formula is Vvertical= [cos(v)] °'2 (Hodgeson, 1997, private communication)

Cour-Palais, 1996

Ep = 0.5*m'v2: rn in [kgl, v in [m/s]
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If a hardpart is penetrated,a critical incidentoccurs. If a soft part is penetrated,x_e

evaluatethe distanceto the hatch(in minutes)andcompareit to the minutesof ox'y.genlet_,

taking into accountthe sizeof the hole. Finally, we introducea small probabilityof LSS
failure,giventhatthereisa holeina sot_part.

For probabilisticcalculations,the flux of orbital debrisand micro-meteoritescanbe

assumedto beprobabilisticallyindependent.Thisallowsus to model thesetwo phenomena
separatelyand,oncethis isdone,to calculatetheoverallprobabilityof aparticlehit.

We usea cut-off thresholdfor particlesof diameter0.01cm,i.e. particlesof smaller

diameterswere not consideredin this model astheir impactenergywasbelow the level of

penetrationof soft parts. We calculatethepercentageof total flux attributablerespectivelyto
debrisand meteoritesby runningORDEM96and usingthe formulaein SSP30425(roughly

60:40).Theformulaefor meteorite-fluxin SSP30425Aare:

FP_(m),theinterplanetaryflux at oneA.U.:

Fp/m ) : Co{¢ gmO.Z06._¢ _-,.38 *- ¢3(m ÷ c4m 2 + c5m4) "0"36+ c6(m + 7¢m2)°85 
co = 3. 156"10^7 c_ = IOAII

cl = 2.2"10/'3 c5 = 10A27

c_ = 15 c6 = 1.3"10^-16

c3 = 1.3"10/'-9 c7 = 10^6

(4.2-2)

st, the shielding factor:

Sf

sin(#)

RE

H

= [1 _- cos(,7)]/2

= Re/(RE ÷ H)

= Earth radius + lOOkm atmosphere (6478km)

= Height above Earth's atmosphere (height of atmosphere lOOkm)

(4.2-3)

GE, the focussing factor of the Earth's gravitational field:

GE = 1 + (R_'r)

r = Orbit Radius (6378km. 400kin)

(4.2-4)

F_(m), the integral flux of particles of mass m or larger, tumbling surface in Earth's orbit:

Fr(m) = sf* GE *lZ'Pr(m) (4. 2-5)

The Probabilistic Risk Analysis in this report includes the probabilities of penetration of

hard parts of the Space Shuttle Suit. This had not been done so far, based on the assumption
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that the hard parts of the suit are not critical (see Section 3 for details). Furthermore. _e

include the effects of shielding of the astronauts in EVAs. The data that we used can be

divided mto flux data (loads), suit data (capacities), and time (exposure).

Our model was run on a Pentium Pro with 64MB of RAM and a 200MHz CPU We

used C_'stal Ball TM, an Excel TM add-on, for the simulation part.

The following list describes each of the variables of the influence diagram in more

detail. Random variables are assigned a distribution. Variables that are deterministic are

variables that represent results of functional evaluations of other variables. For example,

"Penetration" depends on all the variables that are connected to the node ("bubble") that

represents penetration in the influence diagram.

• Hit: A debris particle or a micro-meteorite hits the space suit; we do not consider particles

of diameters less than 0.01 cm as their impact energy is not sufficient enough to penetrate

any part of the space suit. Distribution: Bernoulli (p), based on windows impact during

space shuttle missions (limitation: no consideration of variation of probability of hit over

time)

• Angle: The impact angle is measured against the axis perpend!cular to the surface being hit;

an angle of 0 degree is perpendicular, while an

angle of 90 degrees is tangential to the surface

area. Distribution: Beta (1, l 0), multiplied by 90 o

OD Diametert°: Particles of different sizes and

velocities hit the space suit; we assume an impact

velocity of 10km/s for orbital debris. We use the

data that we obtained from running ORDEM96 for

diameters 0.03cm to 0.13 cm. Any orbital debris

particle of diameter larger than 0. l I cm has enough

kinetic energy to penetrate any part of the EMU.

Therefore, we did not deem it necessary to include

particle diameters of larger than 0.13cm

Distribution: Custom (discrete)

H24

0000 0207 0.413 0620 0 827

Diameter
r_

3,

_o The dismbution for the particle diameter was derived from the ORDEM96 output for the ISS orbit.
ORDEM96 provided us with flux data for a given diameter size and larger(e.g, the flux for particles of 0.03 cm

and larger is 1.04E-01 m'2yr"1, the flux for particles O.04cm and larger is 0.0276 m'2yr't); we calculated the

flux for a set of diameters and then calculated the flux for intervals of 0.01cm (e.g. 0.0276 m2yr 1 for the

interval 0.03 to 0.04 cm); finally we calculated the distribution to be the percentage of flux, attributable to each
of the intervals. We followed a similar procedure for the diameter distribution of meteorites.
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• .MM Diameter: Particles of different sizes and

velocities hit the space suit; we assume an impact

velocity of 20km/s for micro-meteorites. We

calculated the flux for a range of particle diameters,

starting at 0.03cm and including 0.13cm Any

meteorite particle of that diameter or larger has

enough kinetic energy to penetrate any part of the

EMU. Therefore, we did not include any particles of

larger diameters. Distribution: Custom (discrete)

• Part of Suit: The area of the suit being hit by the

particle. We make use of the test data available in

Cour-Palais (1996), and we distinguish between 4

different parts of the suit: soft parts, primary GOX,

HUT and helmet/visor. We assume that the

conditional probability of impact location on the

EMU, given there is an impact, is proportional to the

percentage of surface area covered by that part of the

suit. Distribution: Custom (discrete)

Pate-Cornell and Sachon

I
o o30

| I .

MM Diameter

o"098 120

Part of Suit

I I

075 1 50 225

I
3 O0

• LSS: The performance of the life support system in case of suit penetration, given that the

LSS is not the EMU part being penetrated. If the LSS is penetrated, then we have a fatal

accident and the astronaut is dead before he can reach the hatch. If, however, the LSS is

not the suit element that is being penetrated, then we assume its performance to be

independent of which part of the suit has been penetrated. By this, we want to consider

that there is a chance of malfunction of the LSS when it is called upon in an emergency

mode. For this failure, we assume a conditional probability of 2 in 1000 (Pate-Cornell,

1994). Distribution: Bernoulli (0.002)

• Penetration: Penetration of the suit depends on 4 variables - "Part of Suit", "Hit", impact

energy (which is a function of"Diameter" and "Angle") and "Shielding". If there is no hit,

there is no penetration. If there is a hit, but shielding is effective, there is no penetration.

Given there is a hit and shielding is ineffective, the probability of penetration depends on

impact energy and on the part of the suit being hit. Deterministic Variable (Formula)

• Time Elapsed (Time_E): Oxygen time elapsed between start of EVA and particle impact.

Since a particle impact can occur at any time during the EVA, we assume a uniform

distribution for this variable (we have no data that would indicate otherwise). Distribution:

Uniform [0, Total Oxygen]

27



Pate-CornetlandSachon

• Time Remaining (Time_R): The time left during which the astronaut will have sufficient

oxygen pressure This variable depends on "Time Elapsed" (Time_E), the state of the life

support system "'LSS", the amount of oxygen available at the beginning of the EVA 'Total

Oxygen", and "'Penetration". The formula can be found in Appendix C. Deterministic

variable (Formula)

• Ignition: Because the atmosphere in the suit is composed of pure oxygen, it is highly

susceptible to ignitions; this variable captures the possibility of an ignition due to

penetration of the bladder. We set this conditional probability to be 1 in 1,000 (Pate-

Corneil, 1994). Distribution: Bernoulli (0.001)

• Time Needed (Time_N): Time needed is the oxygen time required for the astronaut to get

back to the hatch. We assume it to be the minimum of 30 minutes and the remaining

mission time (we assume that at any point during the EVA, the maximum distance between

the astronaut and the closest hatch is 30 oxygen minutes). The formula can be found in

Appendix C. Deterministic variable (Formula)

• Astronaut State: Depending on the possibility of penetration, on the state of the LSS and

the time needed to get to the hatch, the astronaut can be OK or severely injured/dead The

formula can be found in Appendix C. Deterministic variable (Formula)

• Total Oxygen: Total amount of oxygen available to astronaut at the start of an EVA

(excluding the secondary GOX), measured in minutes. Deterministic variable (Parameter)

• Shielding: During most of their EVAs the astronauts will be partly shielded against

panicles by the space shuttle or the ISS. For each of these cases, we define a percentage of

flux that can be shielded against by the structure (i.e. if there is no shielding, the astronaut

will be exposed to 100% of the panicle flux; if there is shielding by the ISS, he/she will be

shielded against 1/3 of the incoming meteorites and 9/10 of the incoming debris). The flux

factors are listed in table 42-1 (Effective Flux = Incoming Flux * Flux Factor). These

numbers are the result of an estimated guess, as we had no data on this factor at this point

in the study. Distribution: Bernoulli(p)

Shuttle MM [%] OD [%] Time [%]0.333 0.100 0.250

[ISS _ 0.667 0.100 0.500
I

[None i1.000 1.000 0.250

Table 4.2-1: Flux Factors

Particle: Micro-meteorite or orbital debris. Due to their different penetration

characteristics, meteorite and debris panicles have to modeled separately. We use an
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estimated guess of a 60% and 40°o ratio for debris and meteorite percentage of total

particle flux. Distribution: Bernoulli(0 6)

Therefore, there are two main points of concern in the data that we used in our model:

a) Flux data: We used flux data from the shuttle window impacts for the impact

probability of particles of a kinetic energy of 3J or more (the kinetic energy necessary

to puncture the soft part of the EMU - this diameter is the limit below which the

formulae of Cour-Palais (1996) indicate no penetration). Since particles with impact

energies of less than 3J create visible effects in the shuttle windows, the use of this data

might be an overestimation. Also, we used relative weights derived from ORDEM96

data and SSP30425 formulae to estimate the conditional probabilities of particle

diameter, given there is an impact (see footnote on page 24).

b) Shielding: We "guesstimated" the effects of shielding as well as the amounts of time

spent in each environment (Table 4.2-1). Once reliable data are available, the

estimation of these variables can be improved.
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SECTION 5

RESULTS

5.1 FINDINGS AND LIMITATIONS OF THE MODEL

In the model that we developed, we used data from different sources (Christiansen,

1996; Cour-Palais, 1996; Hodgeson, 1993; Kessler et al, 1996; Simonds, 1997 to name a few).

We improved the existing models in the following way. First, we included in our risk

computations the hard parts of the EMU. Second, we considered the effects of shielding.

Third, we extended the risk analysis framework to place the risk of particle hits in the

perspective of the overall EVA risk. We did not run this overall model (which was outside our

scope), but it is clear that particle hits constitute only a part (and probably a minor one) of the

overall EVA risk.

The simulation runs of our model show that the overall probability of a fatal or near-

fatal accident (i.e. astronaut dead or severely injured) due to a hit by orbital debris or micro-

meteorite is below 2% for an exposure of 3,000 hours of EVA. This figure, which includes

penetration of both hard and soft parts of the EMU, is below the threshold set by current

NASA guidelines and is consistent with NASA findings (Simonds, 1996). Our simulation runs

also indicated that the probability of an accident due to penetration of a soft part dominates the

probability of penetration of a hard part. The hard parts of the EMU therefore seem to

contribute a larger part of risk of fatal accidents than has been previously expected, but this

could be attributed in part to the uncertainties regarding the particle flux.

In our simulations, passive shielding reduced by 25% the probability of a critical

incident. Given the significant impact of this passive (and largely free of cost) safety measure,

time should be spent on-mission schedule development to make the most use of possible

shielding. The effects of shielding, however, are a function of the actual particle flux in orbit

(which itself is uncertain), and of the position of the astronauts relative to any structure that

might shield them. In our model, we used a coarse estimate of the latter factor as we did not

have access to any conclusive data. Further refinement will be necessary.
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A major source of uncertainty is the flux of orbital debris. Current models provide some

estimates but they do not necessarily concur with experience. For example, the number of

window impacts on the shuttle assessed by simulation is 30% below the actual number

measured in orbit. Our simulation indicated that the probability of a critical event is very,

sensitive to both the probability of a particle hit and the size of the particle. An important input

is thus the flux distribution, i.e. the distribution of total flux measured by the size (diameter) of

the particles. In particular, everything else being equal, a change of 1% in the probability of a

particle hit (from 09782 to 0.9675) almost doubled the probability of a fatal accident _ The

same is true for variations of the particle diameter distribution. Uncertainties about the flux of

debris of less than 10cm diameter are of particular concern. Further, research indicates that all

sources or processes by which debris of this diameter class get generated are not well

understood (NRC, 1995). We do know that future space activity will increase the flux of

debris in LEO and other orbits. Therefore, we know that the amount of orbital debris will

increase, but their actual future flux can only be guessed. In addition, while current flux

models predict a very low probability of critical penetration of the EMU, data gathered from

space shuttle missions suggest that the current model predictions be reconsidered and that

further research into the flux of orbital debris is necessary.

In the long run, the total particle loads to which the astronauts will be subjected in orbit

depend on the duration of exposure as well as the debris flux. Unexpected events will most

likely increase the number of EVA hours. Reducing the risk of penetration due to particle hits

will require a harder space suit - or shielding. NASA has to decide if the development of such

an advanced space suit should be a priority item or if it could be delayed.

In our calculations, we performed a sensitivity analysis for the loads (debris flux)

because they appear to dominate the uncertainties of the results. We varied the probabilities of

impact and the probability distribution for the diameter of the orbital debris. We did not vary

the probability distribution for the meteorite diameter, as the research suggests that these data

are more reliable than the orbital debris data. The results of this sensitivity analysis are shown

in Appendix A, the parameters that we varied are listed in Appendix B.

For a full scale risk analysis, however, a sensitivity analysis of both the loads and the

capacities has to be performed since both are uncertain: the flux of orbital debris is uncertain

and the ballistic limits of various EMU elements have not been established by tests yet. Time

11We want to point out that due to the extremely low probabilities involved here, a Monte-Carlo simulation
reqmres a large number of runs. Therefore, these results have to be understood as more relative than absolute.
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and budget constraints, however, did not allow us to perform a full-scale sensitivity analysis at

this point. Further research is also needed to assess the effects of impacts on soft and hard

suits, particularly on the combination of TMG covered aluminum sheets. In addition, the

contribution of these uncertainties about capacities to the uncertainties on the risk should be

assessed to permit proper interpretation of the results.

Other limitations of our results include the following:

1 Improved data on the relevance of oblique impacts are needed.

. We used a constant velocity of 10km/s for debris and 20km/s for meteorites. We are

aware that the velocity of particles varies and this variation can be represented by a

distribution, but we feel comfortable with our simplification after an analysis of the

velocity spectra.

. Better data are needed for PLss(F), the probability of failure for the life support system

given that there is a penetration in another part of the suit. This might prove to be an

important variable, since holes of diameter of less than 4mm are more likely that those

of larger diameters (we assume that a penetration hole of more than 4ram in diameter

results in a fatal accident)

4. Better data are needed for the probability of suit ignition due to particle penetration

. We needed a better description of the mission profile of EVA missions. We needed to

know, in particular, the time spent in each environment to be able to estimate the

effects of passive shielding and we needed the distance to hatch over time to be able to

assess the time and oxygen necessary to get back to the hatch in the event of an

accident.

5.2 IMPLICATIONS FOR RISK MANAGEMENT

Although during E VAs, the astronauts are unlikely to be "as safe outside [the ISS] as

inside", the risks that were computed for the current ISS-related EVA plans seem to be

acceptable within the parameters defined by NASA. A number of uncertainties, however, can

affect the actual risk levels, including uncertainties about loads, capacities and exposure.
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In thefuturemanagementof suchEVAs, theseriskanalysisresultsarerelevantfor a numberof

decisionsstill to be made. First, passiveshieldingby the orbiter or the ISS shouldbe an

importantpart of EVA risk managementand taken advantageof wheneverpossible. The
numberof EVA hours is also an important componentof the risk. The 905 hours of

constructionshouldbe consideredfirm at this points but therewill undoubtedlybe some

furtherunexpectedEVAs requirements.

Thereremainsthe issueof whetherahardsuitshouldbemadeavailableandwhen. We

understandthat the time and budget constraintsof the ISS did not allow for the full

developmentof a hard suit at the time the final decisionwasmade. It seemshowever,that
additional work in LEO will be needed in the future, whether for the operation and

maintenance of the ISS or for other purposes (including perhaps, the repair of satellites).

Given the costs and the vuinerabilities of the current EMU, it would be logical to complete the

development of a hard suit with proper attention to mass and stowage volume. Such a robust

suit could be more easily produced and maintained than the current one, it could probably be

produced at lower costs, it could provide a higher level of safety, and it should be able to

sustain the higher pressures that are required for an improved level of human performance.
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APPENDIX A: RESULTS

PASSIVE SHIELDING

Probabifity of Hit I
Flux Disb'ibutJon:I

Outcomes: Frequencies: Probabilities:
AOK 29,995 99.983%

Penetration Soft Part 2 0.007%

Penetration Hard Part 3 0.010%

30,000 100.000%

Probability of Hit:.fl
Flux Dis_butJon: I

Outcomes: Frequencies: Probabilities:
AOK 29,991 99.970%

Penetration Soft Part 5 0.017%

Penetration Hard Part 4 0.013%

30,000 100.000%

Probability of Hit: I
Rux Dis_butJon: II

Outcomes: Frequencies: Probabilities:
AOK 29,992 99.973%

PenetrationSoft Part 5 0.017%

Penetration Hard Part 3 0.010%

30,000 100.000%

Probability of Hit II
Flux Dis_butJon: II

Outcomes: Frequencies: Probabilities:
AOK 29,992 99.973%

Penetration Soft Pad 4 0.013%

Penetration Hard Pad 4 0.013%
30,000 100.000%

NO PASSIVE SHIELDING

Probability of Hit I
Flux DisMbutJon: I

Outcomes: Frequencies: Probabilities:

AOK 29,994 99980%
Penetration Soft Part 5 0.017%

Penetration Hard Part 1 0003%

30,000 100.000%

Probability of Hit: II
Flux Distribution: I

Outcomes: Frequencies: Probabilities:
AOK 29,984 99.947%

Penetration Soft Part 13 0.043%

Penetration Hard Part 3 0.010%

30,000 100.000%

Probability of Hit: I
Flux Disb'ibution: II

Outcomes: Frequencies: Probabilities:
AOK 29,990 99.967%

Penetration Soft Part 9 0.030%

Penetration Hard Part 1 0.003%

30,000 100.000%

Probability of Hit: II
Rux OistJribut_on:II

Outcomes: Frequencies: Probabilities:
AOK 29,984 99.947%

PenetrationSoft Part 13 0.043%

PenetrationHard Part 3 0.010%

30,000 100.000%

Each table represents the results of a simulation run with a set of different parameters. The

parameters that were varied were the probability of being hit by a particle (scenarios [ and II)

and the diameter distribution of orbital debris, given that there is a hit by orbital debris

(scenarios I and [I). Appendix B shows probabilities for each of the parameters.
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• Probability of Hit (total flux consists of MM and OD)

[ Unmodified values: II Modified values:

P(No Hit) 0.9782 P(No Hit)

P(Hit) 0.0218 P(Hit)

Flux Distribution:

I Unmodified (taken from ORDEM96):

Orbital Debris

Diamater Percenta,(]e
[cm] of Flux

0.03 7.35E-01
0.04 1.71E-01
0.05 5.31E-02
0.06 2.04E-02
0.07 9.23E-03
0.08 4.58E-03
0.09 253E-03
0.10 1.49E-03
0.11 9.33E-04
0.12 6.15E-04
0.13 1.78E-03

II Modified:

Orbital Debris

Diamater Percentage

[cm] of Flux
0.03 6.00E-01
0.04! 1.00E-01
0.05 1.00E-01
0.06 1.00E-01

0.07 1.00E-01
0.08 1.00E-01
0.09 1.00E-01
0.10 1.00E-01
O.11 1.00E-01
0.12 1.00E-01
O.13 1.00E-01

Pate-Cornell and $achon

0.9675

0.0325
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APPENDIX C: PROGRAM CODE

REM THE FOLLOWING FUNCTION EVALUATES IF THERE IS PENETRATION OF THE EMU AND THE

REM DIAMETER OF THE HOLE IF A SOFT PART IS PENETRATED

REM PENETRATION IS SET TO i00 IN CASE OF FATAL ACCIDENT

REM

DATA FOR BALLISTIC LIMITS TAKEN FROM COUR-PALAIS, 1996

REM FORMULAE FOR MM AND OD HOLE DIAMETERS FROM COUR-PALAIS, 1996

REM

REM E IMPACT IMPACT ENERGY (TAKING DIAMETER AND IMPACT ANGLE

CONS IDERATI ON)

REM

FUNCTION PENETRATION(ANGLE, DIAMETER, HIT, PARTICLE, SUIT_PART, SHIELDING)

E IMPACT _- 0

INTO

IF PARTICLE -. 0 THEN

REM IMPACT BY ORBITAL DEBRIS

E IMPACT =- 0.5 * (4 / 3 * 3.14159265359 * (DIAMETER / 2) ^ 3 * 2.71) * 100000

• COS(ANGLE * 3.14159265359 / 180}

IF HIT =" 1 AND SHIELDING u 0 THEN

IF E IMPACT > 71 THEN

PENETRATION " I00: REM OD PENETRATES ANYTHING

ELSEIF E IMPACT >-- 60.4 AND SUIT PART -. 2 THEN

PENETRATION -. i00: REM OD PENETRATES PRIMARY GOX

ELSEIF E IMPACT >-- 44 AND SUIT PART " 1 THEN

PENETRATION ,. i00: REM OD PENETRATES HUT

ELSEIF SUIT PART ,, 0 THEN

PENETRATION ,, 0.00176 * (E_IMPACT ^ 1.35): REM OD PENETRATES SOFT PART,

HOLE DIAMETER

ELSE

PENETRATION ,- 0

END IF

ELSE

PENETRATION -, 0

END IF

ELSE

REM IMPACT BY MICRO-METEOROID

E IMPACT " 0.5 * (4 / 3 * 3.14159265359 * (DIAMETER / 2} ^ 3 * 1.15} * 400000

• COS(ANGLE * 3.14159265359 / 180}

IF HIT " 1 AND SHIELDING " 0 THEN

IF E IMPACT > 170 THEN

PENETRATION *" I00: REM M_ PENETRATES ANYTHING

ELSEIF E_IMPACT>-- 75 AND SUIT_PART " 2 THEN

PENETRATION " i00: REM _M PENETRATES PRIMARY GOX

ELSEIF E IMPACT >-- 70 AND SUIT PART " 1 THEN

PENETRATION *- i00: REM MM PENETRATES HUT

ELSEIF SUIT PART " 0 THEN

PENETRATION " 0.00153 * {E_IMPACT ^ 1.344): REM MM PENETRATES SOFT PART,

HOLE DIAMETER

ELSE

PENETRATION " 0

END IF
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ELSE

PENETRATION = 0

END IF

END IF

Pa_e-Cornell and Sachon

END FUNCTION

REM - ,,

REM THE FOLLOWING EVALUATES HOW MUCH OXYGEN TIME THE ASTRONAUT HAS LEFT

FUNCTION TIME_R(LSS, SUIT, TIME_E, TIME_MIN, KSI)

REM TIME MEASURED IN HOURS TO BE CONSISTENT WITH PROBABILITIES

IF LSS ffi 1 AND SUIT a 0 THEN

TIME R = TIME MIN - TIME E

ELSEIF LSS - 1 AND SUIT < 0.4 THEN

REM LSS OK, SUIT HAS SMALL HOLE: PRIMARY AND SECONDARY GOX CAN BE USED

TIME_R _ 0.5 + (TIME_MIN - TIME_E) * KSI

ELSEIF LSS a 1 AND SUIT < i00 THEN

REM LSS OK, SUIT HAS LARGE HOLE: EXPONENTIAL LOSS OF OXYGEN

IF 0.5 * EXP(0.4 - SUIT) > 0 THEN

TIME R = 0.5 * EX_(0.4 - SUIT)

ELSE

REM HOLE TOO LARGE FOR OXYGEN PRESSURE TO RE STABLE

TIME R m 0

END IF

ELSEI¥ LSS < 1 AND SUIT = 0 THEN

REM LSS BAD, SUIT OK: LOSING OXYGEN, ABORT MISSION (I.E. NO ASTRONAUT DEAD

DUE TO BAD LSS)

TIME R - TIME MIN - TIME E

ELSEIF LSS < 1 AND SUIT < 0.4 THEN

REM LSS BAD, SUIT HAS SMALL HOLE: SWITCH TO SECONDARY GOX, BUT MIGHT NOT

WORK

TIME R - 0.5 * KSI

ELSE

REM LSS BAD AND SUIT HAS HOLE LARGE1% THAN 0.4 CM: FATAL

TIME R " 0

END IF

END FUNCTION

REM

REM TH_ FOLLOING FUNCTION EVELUATES THE STATE OF THE ASTRONAUT GIVEN PENETRATION

OCCURS

FUNCTION STATE(TIME, DISTANCE, HOLE, IGNITION)

IF HOLE > 0 THEN

IF IGNITION " 0 AND (TIME - DISTANCE)

STATE - 1

ELSE

STATE m 0

END IF

ELSE

STATE = 1

END IF

>0 THEN
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IF (TIME - DISTANCE) < 0 THEN STATE = 0

Pate-Corne{l and Sachon

END FUNCTION

REM

THE FOLLOWING FUNCTION EVALUATES IF A HARD OR A SOFT PART GOT PENETRATED

FUNCTION CAUSE(PART, EFFECT)

IF EFFECT = 0 THEN

IF PART > 0 THEN CAUSE = 2: REM HARD PART

IF PART _ 0 THEN CAUSE _ i: REM SOFT PART

ELSE

CAUSE = 0

END IF

END FUNCTION

REM

FUNCTION METEOROID FLUX(MASS)

REM METEOROID FLUX IN LEO AT 400KM

CO _ 3.156 * i0 ^ 7: Cl - 2200:C2 = 15:C3 - 1.3 * I0 ^ (-9)

C4 = i0 ^ ii: C5 -- i0 ^ 27:C6 -- 1.3 * i0 ^ (-16): C7 - i0 ^ 6

METEOROID FLUX = CO * ((Cl * MASS ^ 0.306 + C2) ^ (-4.38) + C3 * (MASS + C4 *

MASS ^ 2 + C5 * MASS ^ 4) ^ (-0.36) + C6 * (MASS + C7 * MASS ^ 2) ^ (-0.85))

METEOROID FLUX - 0.6680258 * 1.941843 * METEOROID FLUX: REM 0.66.. AND 1.94..

FOR CIRCULAR ORBIT AT 500KM

END FUNCTION
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0.2

2
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ISource:Cour-Palais Report, Southwest Research Institute, June 1996 I

ITable 1: Shuttle Suit Element Surface Arias I

Sui_..t.t Material Failure

Elements Layup criteria
Boots TMG+B/adder NL & 4ram

Gloves TMG+B/Idder NL & 4ram

Lower Legs TMG+Bladder NL & 4ram

Upper Legs TMG+Bladder NL & 4ram
Lower Arms TMG+Bledder NL & 4ram

Upper Arms TMG+Bladder NL & 4ram

Waist Brief TMG+B/edder NL

Helmet&Visors Lexan+Po/y_. NPS

HUT TMG+Fiberg/. NPS
D&CM TMG+I.6mm A/u NPS

PLSS: Valves etc. TMG+ l Tmm Alu NPS

PLS$: CCC TMG+23mm A/u NL & 4ram

PLSS: Batt Cover TMG+O 48mm A/u NPS

PLSS: Primary Cox TMG+3.6mm A/u NPS

PLSS: Secondary Cox TMG+lSmmAlu NPS

Sizin_l Rin_ls TMG+32mm A/u NPS

S, Area Total Area Hard Are...aa

[m^21 [m^_l (m^2]
0.46 0,46

0.10 0.56

0.60 1.16

0,26 1.42

0.38 1.80

0.28 2.08

0.23 2.31

0.21 2.52 0.21

0.12 2.64 0.33

0.05 2.69 0.38
0.31 3.00 0.69

0.07 3.07 0.76

0.03 3.10 0.79

0.24 3.34 1.03
0.24 3.58 1.27

variable

0.0586592

0.0670391

Total surface area: 2.31 3.58
Total area soft parts: f.27 2.31 64.53%

Total area hard parts: 1.27 35.47%

ISource:Kosmo, Joseph J e-mail, Subiect: Status of EMU Material Sample Impact Tests, 24.02.1997
Vertical Impact

HITF Shoot M__ _ Volu_= M__tt Sold
[mm] [cm'3] [g] [km/s]

A 2905 AI 0.299 0.000112 0.000311 6.85

A2894 AI 0,300 0.000113 0.000314 700

A2898 AJ 0.392 0.00025; 0.000701 6.90

A2897 AI 0.404 0.000276 0.000768 6.68

A2900 AJ 0.500 0.000524 0.001456 7.03

A2907 AJ 0,600 0.000905 0002515 6.95

A2910 AJ 0.599 0.0(X)900 0002503 5.79

A2911 AJ 0.520 0.000589 0.001637 4.35

A2912 AJ 0.794 0.002097 0005829 5.23

A2929 AI 0.407 0.000282 0.000785 6.95

A2930 AJ 0.495 0.000508 0.001412 6.84

A2931 _J 0.608 0.000941 0.002617 7.18

A2932 AI 0.517 0000579 0.001609 5.68

A2933 _1 0.404 0.000276 0.000768 7.11

Specific Mm Al [g/cm^ 3]: 2.78
Kinetic Energy[J]: (Mils x VelocityA2)/2; [lVlassl=,kg,

ITable2: Space Shuttle Suit Balliltk: Limits

Suit Element Failure Mode Me_o_ Debts
BL[J1 BLrJI

Arms&Legs No Leak 3.4 3.2

Arms&Legs 4 mm Hole 68.0 68.0
Boots&Gloves No Leak 3.4 3.2

Boots&Gloves 4 mm Hole 68.0 M,0

Sizing Rings No Spall/t.eak _ 47.6 39.3

HUT No Spall_.uk 70.0 44.0

Waist(Brief) No Leak 3.4 3.2

Helmet&Visor No Spill/Leak 197.0 71.0
D&CM Not Critical NA NA

D&CM No Spill/Leak 11,5 10.0

PLSS: Primary COX No Spill/Leak 70.0 60.4

PLSS: Secondary COX No SpallA.eak 15.4 13.4

PLSS: CCC No Spill/Leak 25,5 21,4
PLSS: CCC 4 rnm Hole 172.0 71.0

PLSS Battery Cover No SpallA.eak 3,5 3.5
PLSS: Valves etc. Not Critical NA NA

PLSS: Valves etc. No S pall/Lsak 11.5 10.0

Eo_ecaX aaN.t
[J] [d_d

5.25 0

5.54' 0

12.01 0

12.32 0

25.68 01

43.70 0_
30.18 0!

11.14 0
57.35 0

13.64 30
23.77 30

48.53 30
18.64 30

1396 45

[Velocity] = r_s

[J] [Bladder]
5.25 No Hole

5.54 No Hole

12.01 No Hole

12.32 No Hole

25.88 No Hole

43.70! Pinhole
30.18! Hole (1.3ram)

11,14 No Hole

57.35 Hole (2.Sx2.1mm)
11.81 No Hole

20.68 Pinhole

4203 Hole (0.5mm)

16.06 Hole (0,8mm)
9B7 No Hole



Simulation Input.xts

Assumption: Diameter

Custom distribution with parameters:

Total Relative Probability

Assumpdon: Particle Hit

Custom distribution with parameters:

Total Relative Probability

[Final Model.xls]Model - Cell: E23

Relative Prob.
0.030 O.734615
0.040 O. 170769
0.050 0.053077
0,060 0.020385
0.070 0.009231
0.080 0.004577
0.090 0.002529
0. I O0 0.001490
0.110 0.000933
O. 120 0.000615
O. 130 0.00 ! 779

I .OOOOOO

[Final Modal.xls]Model - Cell: B23

0.00 0.982420
1.00 0.017580

1.0OOOOO

Assumpdon: LSS Perf. [Final Model.xls]Model - Cell: K32

Custom distribution with parameters:
Singlepoint
Single point

Total Relative Probability

0.OO 0.0010OO
1.00 0.999000

1.0OOOOO

Assumption: Ksi [Final Modal.xls]Model - Cell:
(random variable usedto simulateoxygen left in primary GOX after penetration)

Uniform distribution with parameters:
Minimum 0.00
Maximum 1.00

Assumption: Ignidem

G32

Custom distribudon with parameters:
Single point 0.OO
Single point 1.OO

Total Relative Probability

[Final Modal.xls]Model - Cell: H38

0.999000
0.OO10OO
1.0OOOOO
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Simulation Inpur..xls

Assumption: Part of Suit

Custom distribution with parameters:
Single point
Single point
Single point
Single point

Total Relative Probability

Assumption: Shielding

Custom distribution with parameters:
Single point
Single point

Total Relative Probability

0.00
1.00
2.00
3.00

0.O0
1.O0

[Final Modd.xls]Model - Ceil: 1(23

Relative Prob.
0.640000
0.230000
0.070000
0.060000
1.0OOOOO

[Find Model.xls]Model - Cell: B29

Relative Prob.
0.504167
0.495833
1.OOOOOO

Assumption: Particle

Custom distribution with parameters:
Single point
Single point

Total Relative Probability

1.00
2.00

[Find Model.xls]Model - Cell: B34

Reladve Prob.
0.635393
0.364607
1.0OOOOO

Assumpdon: H21mpact Angle
(the output was multiplied by 90)

Beta distribution with parameters:
Alpha 1.OO
Beta 4.00
Scale 1.0OO

Selected range is from 0.000 to +Infinity

[Find Model.xls]Mockd - Cell: H24

Assumption: MM Diameter

Custom distribution with parameters:

Total Relative Probability

0.030
0.040
0.050
0.060
0.070
0.080
0.090
0.100
0.110
0.120

[Find Modd.xls]Model - Ceil: E40

0.626761
0.203658
0.081764
0.037889
O.019481
0.010839
0.006416
0.003994
0.002590
0.006607
1.OOOOOO
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